diaRNAgnosis
- Optoelettronica Italia Srl (Italy)
- Università di Trento (Italy)
- Prinses Maxima Centrum Voor Kinderoncologie Bv (Netherlands)
- Universidad de Granada (Spain)
- NanoGetic SL (Spain)
Abstract
Circulating cell-free ribonucleic acids (ccfRNAs) represent an emerging and important class of molecules, able to provide significant clinical relevance as novel screening, prognostic and therapy monitoring biomarkers in cancer. Through analysing specific ccfRNAs, different cancers can be accurately correlated for type and stage. Sadly, despite extensive academic and clinical research identifying and validating in limited clinical trials, ccfRNAs have not yet entered the field of clinical diagnostics. This is amongst others because the current analytical methods remain less than satisfactory, and until now ccfRNA detection remains therefore challenging, costly, and requires elaborate multi-step sample preparations.
Prompted by these current analytical limitations, two innovative EU companies, Destina Genomica SL (Spain) and Optoelettronica Italia srl (Italy) have developed the “ODG Platform” for direct quantitative measurement of circulating RNA molecules. The diaRNAgnosis project objective is to complete development of the ODG platform, delivering reliable and robust detection of novel ccfRNA signatures that could be linked to specific cancer types. To ensure timely delivery and success of the diaRNAgnosis project, Destina and Optoi have considered and invited partners who they believe will add real value to the consortium. These are the Spanish company NanoGetic SL (specializing in nanotechnologies); three key academic research groups from the Universities of Trento and Catania (Italy), Granada (Spain); as well as the Princess Máxima Center (The Netherlands).
This new pan-European, multidisciplinary and intersectoral team will develop a reliable and innovative method and platform to identify cancer biomarkers in liquid biopsies. The research collaboration will address the need to perform high sensitivity/high specificity analysis of ccfRNAs that are specifically and overexpressed in testicular germ cell tumour (TGCT) and prostate cancer (PCa) respectively.